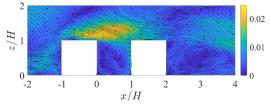
Correlation and quantification of flow field and pollutant dispersion mechanisms in a single street canyon


*Xisheng Lin¹⁾, Bingchao Zhang²⁾, Cruz Y. Li³⁾, and Tim K.T. Tse⁴⁾

^{1), 2), 4)} Department of Civil and Environmental Engineering, HKUST, Hong Kong, China ¹⁾ <u>xlinbl@connect.ust.hk</u>

²⁾ <u>zhangbc@ust.hk</u> ⁴⁾ <u>timkttse@ust.hk</u> ³⁾ School of Civil Engineering, CQU, Chongqing, China ³⁾ <u>cruzli@cqu.edu.cn</u>

ABSTRACT

This study uses spectral proper orthogonal decomposition (SPOD) to dissect the flow field within a single street canyon (Fig. 1). SPOD captures the large-scale structures and small-scale vortices, and quantifies their respective impacts on pollutant removal above the canyon. The results indicate that pollutant dispersion in a single street canyon is affected by both advective and turbulent flows, while the latter is more influential in fully developed canyons. The study categorizes three SPOD mode types: 1) Mode A1, capturing flow separation and reattachment, has minimal effect on turbulent dispersion. 2) Modes B1-B3 (Fig. 2), linked to large-scale motions, influence sweep and ejection events and are thus pivotal to turbulent diffusion. These modes illuminate the stark contrasts between single and fully developed street canyon flows; in the latter, certain modes representing large coherent structures demonstrate a weak correlation between vertical and streamwise fluctuating components, thereby minimally impacting turbulent pollutant diffusion. 3) Modes C1-C2, associated with irregular small-scale vortices, vary in influence along the streamwise direction, significantly affecting the leeward side of the canyon. These insights facilitate understanding flow dynamics in urban environments and addressing city-scale pollutant dispersion challenges.

^{2) 3) 4)} Professor

¹⁾ Graduate student

The 2024 World Congress on Advances in Civil, Environmental, & Materials Research (ACEM24) 19-22, August, 2024, The K hotel, Seoul, Korea

Fig. 1 CFD model of the street canyon

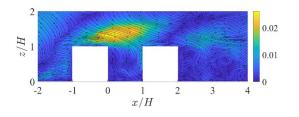


Fig. 2 SPOD mode of flow fields